PRESENTATION LEARNING

OBJECTIVE(S)

1. Introduce Session/Presenters
2. Define Climate Services
3. Three Key Bottlenecks:
 • Capacity (Observation Networks)
 • Communication
 • Equitable Services (reaching everyone)
CLIMATE SERVICES DEFINITION

“Climate services involve the Production, Translation, Transfer, and Use of Climate Knowledge and Information in climate-informed decision making and climate-smart policy and planning.”
Climate Service Timescales

Weather – Will it rain in tomorrow?

Seasonal – Will it rain more than normal in the next growing season? (el Nino)

Historical – What is the average onset date over the past 30 years?

Climate Change - Can you grow crop x in this location in 2070?

Courtesy L. Goddard, IRI
Latmingue, Senegal – Zone of Influence (edge to edge)
Climate Service Timescales

Weather – Will it rain in tomorrow?

Seasonal – Will it rain more than normal in the next growing season? (el Nino)

Historical – What is the average onset date over the past 30 years?

Climate Change - Can you grow crop x in this location in 2070?

Courtesy L. Goddard, IRI
• Managing ups and downs

• Maximizing good years and Minimizing bad years

• Imagine the perfect climate information system
Bottleneck: Observation Networks

WMO- World Wide Watch Global Surface Meteorological Network

STATION STATISTIC:
Total # of Stations: 9731
Discarded by Filter: 2582
Discarded Manually: 29
Stations Used: 7120

Data Source: NCDC Global Surface Summary of the Day
Average Number of Weather Stations Reporting from Rwanda

Bottleneck: Observation Networks
SOWING SEASON RAINFALL AND YIELD TIME SERIES

Source: 2015 World Bank Ag. Risk Assessment: Tanzania

Bottleneck: Communication
HIGH CAPACITY! REACHING FARMERS?

By Alvar Mwakyusa

The accuracy of weather forecasts by the Tanzania Meteorological Agency (TMA) during the October-December 2015 rainy season, which was characterised by the El-Niño phenomenon, was 85.8 per cent, far beyond the established global standard of 70 per cent.

"Reviews conducted after that season indicate that our forecasts were correct by 85.8 per cent and this is excellent given the fact that the World Meteorological Organisation (WMO) has pegged 70 per cent as accepted standard," the Director General of TMA, Dr Agnes Kijazi, has disclosed.

During the October-December rainfall season known as "Vuli" in Kiswahili, a big chunk of the country received average to above average rains as had been predicted by TMA.

The TMA boss made the revelation during a two-day seminar for journalists from print and electronic media in the lakeside city of Mwanza on the review of the "Vuli" rains and an outlook for the March-May rainfall season, best known as 'Masika.'

• Tanzania Met wins WMO award for Seasonal Forecast
• Accuracy of 85.8 percent
• Global standard is 70%

Bottleneck: Communication
GENDER AND VULNERABLE GROUPS

Understand the user

1. Woman often make different decisions
2. Woman sometimes use different communication channels
3. The poorest often don’t have mobile phones
4. The poorest often lack the resources to act on information
FEED THE FUTURE
The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov
A process for engaging in co-exploration of climate decision-making

Anna Steynor
“Here is a report containing some data on climate change impacts for agriculture in Tanzania”

“Thanks? I can’t use this in the decision I’m making”

OR

“Thanks! All our decisions should be driven by this data”

OR

“Thanks, I’ll add it to the pile of other reports that I’ll never have time to read”
“You need to tell me what climate information you need”

“But what can you provide?”

“No, first tell me what you need, then I’ll tell if you we can provide it”

“Okay... I need to know if its going to get wetter in the future”

“Oh... darn, we can’t tell you that. Ask another one”

“Hello?”

“Anyone there?”
Current paradigms for integrating climate information into decision making are not optimal:

Data driven/impacts driven approaches are dominated by the science and are characterised by a disconnect between the science and context.

User driven methods are stunted by “users” struggling to articulate needs in the framing of a discipline that is not their own.
TESTING AN APPROACH

Testing an approach to collaborative decision-making

Tested through workshops:
• Series of workshops in the Berg Rivier Muncipality – South Africa
• Dar Es Salaam 5 cities workshop: peri-urban focus
• Accra 2 cities workshop: urban focus on coastal flooding
ELEMENTS OF THE CO-EXPLORATION APPROACH

- Creation of a multi-disciplinary team including producers and users of information
- Set up a dialogue of equals in solving a common problem
- Place-based
- Led by vulnerabilities, not climate information
CO-EXPLORATION: A NUANCED APPROACH

Philosophy: Climate information has a place in decision-making but should not (and does not) lead decision-making.

Reflected in the steps taken in co-exploration:

1. Identify predominant livelihoods, infrastructure and services
2. Identify stressors on those elements (including current climate)
3. Identify potential response options
4. How might climate change information change the nature/timing of those response options?
OUTCOMES OF CO-EXPLORATION

• Collaborative decision-making. Similar to co-production but doesn’t presuppose the “production” part.

• Develops an inherent understanding and respect of both the producer and user needs

• Uses data and tools to create new dialogue more than provide answers

• Provides a means to strengthen climate data “literacy”

• A replicable process for different places
BUT IT HAS LIMITATIONS…..

- Need to overcome terminology issues when engaging multi-disciplinary groups eg uncertainty, resolution…..

- Once off workshops are very limited and potentially harmful. How do we actually sustain long-term engagement?

- Learning in workshops has limited potential for uptake in the “real world”

- Resource and time intensive
GENERAL LESSONS ON STAKEHOLDER ENGAGEMENT

- Engage the appropriate users
- Language within a common language
- Awareness of socio-cultural context
- Long term engagement centred on real trust relationships have the potential to be very powerful.
- Decision processes are complex, nuanced, and often quite opaque
- Integrating climate information into decision processes is not easy, much value is still lost
- “Good” development often (but not always) aligns with climate resilience
TAKE AWAY MESSAGES

- Engaging stakeholders in using climate information has to go beyond simple data / report delivery.

- Climate is often just one of many factors stressing a system, this should be acknowledged when incorporating climate information into decision-making.

- Engaging in equal dialogue between producers and users can help build the trust relationship required to start to unpack the complexity of using climate information.
ADDITIONAL RESOURCES

Meeting the Demand for Climate Services

March 14, 2016 / Haresh Bhojwani / International Research Institute for Climate and Society
PRESENTATION LEARNING OBJECTIVES

Building a climate service in a difficult place:

The Jamaica experience was built on years of success and failure globally – some critical steps are: high level buy-in, addressing specific capacity constraints, stakeholder engagement, validation of use. These steps are

A Climate Service should take advantage of economic opportunities.

Africa – availability, access and use of climate services need to be built at the same time.
<table>
<thead>
<tr>
<th>National Goals</th>
<th>National Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jamaicans are empowered to achieve their fullest potential</td>
<td>1. A Healthy and Stable Population</td>
</tr>
<tr>
<td>2. World-Class Education and Training</td>
<td>2. World-Class Education and Training</td>
</tr>
<tr>
<td>4. Authentic and Transformational Culture</td>
<td>4. Authentic and Transformational Culture</td>
</tr>
<tr>
<td>5. The Jamaican society is safe, cohesive and just</td>
<td>5. Security and Safety</td>
</tr>
<tr>
<td>7. A Stable Macroeconomy</td>
<td>7. A Stable Macroeconomy</td>
</tr>
<tr>
<td>9. Strong Economic Infrastructure</td>
<td>9. Strong Economic Infrastructure</td>
</tr>
<tr>
<td>• Agriculture</td>
<td>• Agriculture</td>
</tr>
<tr>
<td>• Manufacturing</td>
<td>• Manufacturing</td>
</tr>
<tr>
<td>• Mining and Quarrying</td>
<td>• Mining and Quarrying</td>
</tr>
<tr>
<td>• Construction</td>
<td>• Construction</td>
</tr>
<tr>
<td>• Creative Industries</td>
<td>• Creative Industries</td>
</tr>
<tr>
<td>• Sport</td>
<td>• Sport</td>
</tr>
<tr>
<td>• Information and Communications Technology</td>
<td>• Information and Communications Technology</td>
</tr>
<tr>
<td>• Services</td>
<td>• Services</td>
</tr>
<tr>
<td>• Tourism</td>
<td>• Tourism</td>
</tr>
<tr>
<td>15. Sustainable Urban and Rural Development</td>
<td>15. Sustainable Urban and Rural Development</td>
</tr>
</tbody>
</table>
Resources vs. Quality of service

NOAA, UK Met, etc.
1. Drought Forecast

![Drought Forecast Map](image)

Jamaica’s three month drought analysis map. Produced from November 2014 - January 2016 forecast SPI values.

2. Farmer Forums

![Farmer Forums Image]

3. Information Dissemination

- Phone text messages 2014-15
- Extension offices
- Direct Information requests

JAM-CL72 Devon

+1-876-895-2158

Drought likely to continue over eastern and central parishes by t...

JAM-CL14 Smith

Jul 16, 2014

Drought likely to continue over eastern and central parishes by t...

JAM-CL16 Ellis

Jul 16, 2014

Drought likely to continue over eastern and central parishes by t...
<table>
<thead>
<tr>
<th>Impacts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported loss in the value of ag production, nationally</td>
<td>30%</td>
</tr>
<tr>
<td>Average ag production loss in sampled farmers</td>
<td>57%</td>
</tr>
<tr>
<td>Average loss in ag production among the farmers with “climate risks”</td>
<td>72%</td>
</tr>
<tr>
<td>Average loss in ag production among farmers with “climate risks”</td>
<td>46%</td>
</tr>
<tr>
<td>attending farmer forum and texts in 2014</td>
<td>39%</td>
</tr>
</tbody>
</table>
Mechanism of Impact of Information Service

Information service contributed by *influencing* the agricultural decisions and management:

- planting time (71%)
- choice of crops (61%)
- amount of land cultivated (32%)
- harvesting time (27%)
- mulching practices (27%)
- chemical and fertilizer use (25%)
- Irrigation (19%)
EXPRESSED INTEREST IN CLIMATE INFORMATION SERVICE

<table>
<thead>
<tr>
<th>Percent of Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would like to receive timely and useful climate forecast information in the future</td>
</tr>
<tr>
<td>Would sign up for climate information service if it requires payment for the service</td>
</tr>
</tbody>
</table>
Crop Response to Fertilizer Rates Depends on Rainfall: example of three years
Economic Result of Fertilizer Use Depends on Rainfall: example of three years
Improving Data Availability
Improving Access:
Climate Monitoring
Maproom
ENACTS Countries:
Ethiopia
Gambia
Ghana
Madagascar
Mali
Rwanda
Tanzania
Zambia

ENACTS* IN AFRICA

Deployed Nationally
Deployed Regionally
(Mauritania, Senegal, Guinea Bissau,
Burkina Faso, Niger, Chad)

*Enhancing National Climate Services

Next:
Kenya
Uganda
Malawi
Mozambique
ENACTS SERVER AVAILABILITY

Month, Day, Year of Dekad End

<table>
<thead>
<tr>
<th>Month</th>
<th>AGRHYMET</th>
<th>Ethiopia</th>
<th>Ghana</th>
<th>Madagascar</th>
<th>Mali</th>
<th>Rwanda</th>
<th>Tanzania</th>
<th>Zambia</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 31, 2015</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>June 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>June 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>June 30, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>July 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>July 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>July 31, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>August 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>August 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>August 31, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>September 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>September 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>September 30, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>October 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>October 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>October 30, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>November 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>November 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>November 30, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>December 10, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>December 20, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>December 31, 2015</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
</tbody>
</table>

AGRHYMET, Ethiopia, Ghana, Madagascar, Mali, Rwanda, Tanzania and Zambia’s ENACTS server availability percentage for each Dekad End (MDY).
“Climate services involve the Production, Translation, Transfer, and Use of Climate Knowledge and Information in climate-informed decision making and climate-smart policy and planning.”
INVESTMENT TYPOLOGY

Supply of climate information
- Observing infrastructure
- Data management
- Capacity building for NMS

Tailored information
- Engagement of sector technical communities
- Research on translating climate information for user needs
- Research on climate services good practice

Delivery of climate information
- Institutional communications channels
- ICT and media-based communications channels
- Capacity Building for communications intermediaries

Use of climate services
- Capacity building for users
- Pilot implementation/demonstration

Governance
- Policies to support climate services development and use
- Evaluation and feedback processes
- Sustainable business models
- Boundary institutions

Knowledge sharing and coordination
- Knowledge management on good practice
- Knowledge management on research needs
- Knowledge management on training
TAKE AWAY MESSAGES

• Build a climate service on existing efforts.
• Coordinate with other efforts.
• Integrate
• Validate
ADDITIONAL RESOURCES

- Climate Services Partnership - http://www.climate-services.org/
- International Research Institute for Climate and Society - http://www.iri.columbia.edu/
- CCAFS - http://www.ccafs-climate.org/
Feed the Future
Senegal
Climate Information Services within FTF portfolio
Lusaka, March 14, 2016
Value chain focus: Rice, maize, millet fisheries

Geographic narrowing: Senegal River Valley, Southern Forest Zone, Coastal artisanal Fisheries

9 administrative regions

Key objectives:
- Inclusive agriculture sector growth
- Increased trade
- Improved nutrition status – women and children
- Improved management of natural resources

ZOI population: 4.2 million (32% of total population)
Building the network of rain gauges and disseminating collected data
Early warning system for fishermen with COMFISH

COMMENT ?

Envoyé à temps réel et par sms, des alertes météorologiques aux usagers de la mer ;

 Création et configuration de deux groupes d’utilisateurs: ‘restreint’ et ‘élargi’.

<table>
<thead>
<tr>
<th>Accueil</th>
<th>Contacts</th>
<th>Campagne</th>
<th>Statistiques</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouvelle liste</td>
<td>Les listes</td>
<td>Nouvelle catégorie</td>
<td>Les catégories</td>
<td>Ajout manuel de contacts</td>
</tr>
<tr>
<td>Ajout batch de contacts</td>
<td>Les contacts</td>
<td>La liste noire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liste des contacts

<table>
<thead>
<tr>
<th>Nom</th>
<th>Catégorie</th>
<th>Création</th>
<th>Champs personnels</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liste destination</td>
<td>D’etat</td>
<td>5 juin 2015</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Liste source</td>
<td>D’etat</td>
<td>5 juin 2015</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Early warning system for fishermen with COMFISH
How did we identify the need for this project?

Specific climate information needs of beneficiaries inventoried and indigenous knowledge on bioclimatic indicators and climate risk management practices documented. Context-specific communication strategies analysed for each of the FTF projects, as well as their current governance structure in the perspective of disseminating climate information.

This project builds mainly:
(1) on current achievements of the 4 USAID Feed the Future (FtF) funded projects (Naatal Mbay, Yaajeende and COMFISH, ERA);
(2) on CCAFS work on tools, methods and evidence to support the production, communication and use of climate-related information for agricultural management in several contexts;
(3) on successful experience of CCAFS and partners in Senegal (ANACIM, ISRA) on large scale dissemination of downscaled climate information and services (CIS) in order to better manage climate risk through the improved provision, communication, and use of climate information and services to stakeholders in the crop production, fisheries and pastoralist sectors.
Goal of the project?

Increase the resilience and productivity of targeted Senegalese farming and pastoralist communities, including members of both sexes, in the Feed the Future (FtF) Zone of Influence in the face of climate variability and change, through the improved provision, communication, and use of climate information and services.

A secondary goal defined by USAID is to increase understanding of how to supply relevant and effective climate and weather information to the fishery sector and livestock sector.

The CIS project will also aim at improving Food Security governance beyond producers to include other decision-makers and stakeholders (local communes, service providers to smallholders, different value Chain actors).

Overall, the purpose is to capacitate relevant organizations (ANACIM, bodies involved in the FtF projects implementation) to succeed in developing and communicating tailored and salient CIS in support of farms’, fisheries’ and pastoralists’ communities.
Duration and beneficiary: 3 years to directly reach 245,000 farmers (145,000 with Naatal Mbay and 100,000 with Yaajende)

key indicators

of tailored weather and climate information products developed by the national met service.

of beneficiaries (disaggregated by sex and age) including farmers, pastoralists and fisher folks that got access to CIS; percentage of beneficiaries who effectively received a requested CIS; level of understanding of the proposed CIS by end-users

of stakeholders (disaggregated by sex and age) including farmers, pastoralists and fisher folks that used CIS for their management decision making and adopted best risk management practices; % increase agricultural productivity (crop, livestock and fisheries) as an impact of better risk management through CIS use; % of farmers’ CIS needs being met by the developed and proposed CIS products

of local organizations (private and public) capacitated to produce and disseminate CIS.
A new CIS project: Climate information services for increased resilience and productivity in Senegal (CINSERE)

key partners at the national level, Regional and Global

USAID/Senegal FTF project
ISARA
National Agriculture Department
ICRISAT
CCAFS

Strategy to develop climate services that are demand driven and sustainable

The CIS will be integrated with FtF activities (*Naatal Mbay, Yaajeende*, and COMFISH) to facilitate the increased adoption of the already available risk management tools, approaches and local adaptive practices (e.g., use of improved seeds, water harvesting, and safety at sea). CCAFS will also leverage its products and experience from on-going projects in Senegal and more generally in West Africa, to support these project activities.

There is need to benchmark and identify the relevant business models for use in the CIS approach to sustainability, depending on the CIS Value Chain (VC) segment(s) that elicits Willingness to Pay (WTP) for CIS access by end-users, or depending on WTP outside of the VC. Also, through building a business model based on differentiated public-private partnerships for CIS diffusion, the process could be sustainably pursued in its own.
Communications channels to be used to disseminate the information

Selected men, women and youth stakeholders (e.g.: project technicians, lead farmers, community leaders, private sector (e.g. CBSP), agriculture, environment, livestock, civil protection and met officers, local decentralized officials, media, etc.) organised into local working groups and capacitated/trained on how to work together as a functional and operational team to disseminating climate information to their communities (e.g. adapting current governance and stakeholder organization/structure of each of the 3 USAID projects into the multidisciplinary working groups model (MWG). Each FtF project has its own way to support local groups, and thus the means to deliver climate information for increased usage may differ depending on geographic location and local FtF partner.

Agricultural public and private extension officers, and other key stakeholders (identified in Activity 1) will be trained and equipped to understand and effectively communicate climate information with groups of farmers, pastoralists and fisher folks

Effective technology-based communication channels (e.g., mobile phone, rural radio networks, e-platforms) will be developed by service providers covering the project areas to ensure delivery of climate and weather information to all stakeholders.